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Lp Approximation of Sigma–Pi Neural Networks
Yue-hu Luo and Shi-yi Shen

Abstract—A feedforward Sigma–Pi neural networks with a
single hidden layer of neural is given by

=1 =1

where . In this paper, we investigate the approxi-
mation of arbitrary functions : by a Sigma-Pi neural
networks in the norm. For an locally integrable function
( ) can approximation any given function, if and only if ( ) can

not be written in the form
=1 =0

(ln ) 1 .

Index Terms— approximation, neural network, Sigma–Pi
function.

I. INTRODUCTION

ONE OF the most interesting questions connection neural
networks is the approximation capability of neural net-

works. There have been many papers related to this topic. For the
reference one can read [1]–[13] and the references given there.
In this paper, the-approximation capability of Sigma–Pi neural
networks is investigated. In mathematical terminology, it is to
find some conditions such that under which all the linear combi-
nations of elements are dense in
for any compact set in , where is a
variant, are constants. Let be a function on .
is said to be a SP-function if all functions of the following form:

(1)

are dense in for any compact set in . is said to
be an SP-function if all functions of the following form:

(2)

are dense in for any compact set in . is said to
be an TW-function if all functions of the form (2) are dense
in for any compact set in .

It has been proved in [9] and [10] that if is continuous
on then is a SP-function if and only if can not be
written in the following form:

(3)
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Recently, the present authors in [15] have proved that the pre-
vious result still holds under the condition that is locally
Riemman integrable, i.e., if is locally Riemman integrable
on then is an SP-function if and only if can not be
written in the form (3). Therefore, if the previous conditions are
satisfied, then is an SP-function. It is well known that an

Locally integrable function on may neither be continuous,
nor be locally Riemman integrable. It is natural to ask what is
that characteristic condition for an locally integrable func-
tion to be an SP-function. The purpose of this paper is to an-
swer this question and give a necessary and sufficient condition
to solve the problem. The remainder of this paper is organized as
follows. Our main results are presented in Section II. In order to
prove the main results, several lemmas are given in Section III.
Finally, the proof of the main results is presented in Section IV.

II. M AIN RESULTS

The main results in this paper are as follows.
Theorem 1: Let be locally integrable on with

. Then is an SP-function if and only if can
not be written in the following form on (a.e):

(4)

where are constants.
The following Corollary 2 is an immediate consequence of

Theorem 1.
Corollary 2: Let be locally integrable on with

. Then is an TW-function if and only if is
not a polynomial on (a.e).

Remark 3: Hornik in [4] and M. Leshnoet al. in [3] proved
that is a TW-function if is essentially locally
bounded and nonpolynomial on. Cheng in [12] proved that

is an TW-function if is locally integrable and
belongs to (i.e., the integral is existent for
any rapidly decreasing infinitely differentiable function
on ). Corollary 2 is a generalization of these results.

III. SOME NOTATIONS AND LEMMAS

For , ,
an -multi-index , i.e., and each coordinate
of is a nonnegative integer, let ,

, ,
if each , and

be a function on defined by

(5)
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For a function on and a function on , let supp be the
support of , i.e., supp . Let

(6)

(7)

where is a variant.1 And let be
defined by

(8)

For a function on and a function on , and
are defined by

and

(9)

respectively. Let be the set consisting of all infinitely
continuously differentiable functions on . For a set in ,
let

supp

supp is compact and

supp

supp is compact

supp and

supp is compact and

supp

is locally integrable on

If is -times differential at , is the partial derivative
of at , i.e.,

If is locally integrable on , then is the general deriva-
tive, i.e., is a linear functional on defined by

In order to prove Theorem 1, we need the following Lemmas.
Lemma 3–Lemma 6 can be proved by the argument used in [3],
[4], [9], [10], [15]. Lemma 1 is Corollary 4 in [9], Lemma 2 is
Theorem 10 in [9] (or Corollary in [10]).

1
�(x) 6= 0 is satisfied

Lemma 1 [9]: Let be a compact set in and .
If , then belongs to the closure of in

.
Lemma 2 [9], [10]: Let . Then the following

statements are equivalent:

1) the closure of in is equal to for any
compact set in ;

2) cannot be written in the form (3).
Lemma 3: Suppose that and .

Then can not be written in the form (4) on the interval
, if and only if for any -multiindex there exists an

such that

(10)

Proof: Necessity. Otherwise, there exists an-multiindex
such that

(11)

which implies that

(12)

for any integer with , where .
By some computation, we see that (12) is equivalent to

(13)

where ’s are constants depending on. In other words, is
a solution of the following differential equation of order

:

(14)

It is easy to verify that for
any with and , which implies that

, and are solutions of
(14). Thus any solution of (14) may be written in the form (4)
because , , and are linearly
independent. This completes the proof of the necessity.

Sufficiency. It is easy to see that satisfies (12) if can
be written in the form (4) on , which completes the proof
of sufficiency.

Lemma 4: Let , and .
If can not be written in the form (4) on , then there
exists a such that can not
be written in the form (4) on .

Proof: Otherwise, may be written in the form
(4) on for any . Since

, applying Lemma 1 to , we see that for any
there exists an -multiindex such

that
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which implies that

(15)

where , ,
. Since is a

Frechét space (see, e.g., [14, example 1.46]), it follows from
(15) and the Bair’s category theory that there exits at least a
such that contains a nonempty open set, which implies that

. Letting be an integer with
and applying Lemma 3 to each element in , we

see that can be written in the form (4) with on
for any .

Take such that con-
verges to in . Such a sequence of functions is clearly
existent. Let be the subspace spanned by ,

. It is obvious that is of fi-
nite dimension, hence is closed. According to the previous
conclusions proved, belongs to the subspace . Since

, the closeness of implies that
, i.e., can be written in the form (4) on , which

is a contradiction! The proof is then complete.
Lemma 5:

1) Let , , be a compact set in
and , . Then the

closure of in ;
2) Let , and be a compact set

in . Then the closure of
in .

Proof (1): From the assumption, we may assume that
supp with . From the integrability
of , we have

(16)

Let . For any positive integer , let :
be a partition

of with .
It is clear that belongs to

. Thus, it follows that from (16) and
the following inequality:

(17)

This complete the proof of the conclusion (1). The proof of the
conclusion (2) is similar to that of the conclusion (1). And the
detail is omitted.

Lemma 6: Let and be a nonnegative in-
teger, . Then the following statements are
equivalent:

1) for any compact set in ;
2) for any -multi-index , there exists a

such that

(18)

3) for any -multi-index , there exists a
such that (18) is satisfied.

Proof: (2) (3) is obvious.
(1) (2): Otherwise, there exists an-multi-index such

that . Let be a compact with .
Then, for any and with , we
have

(19)

which implies that

(20)

Taking into account the assumption (1), (20) implies that
, , which is clearly

impossible since . This completes the proof of (1)
(2).

(3) (1): For any -multi-index , let be an -multi-
index with and . According to the assumption,
there exists a such that (18) is satisfied. Let
be the function defined by . Then

belongs to according to Lemma 5. It is easy
to see that (18) implies that . Thus, by
Lemma 5 and Lemma 1, .
Hence, is dense in . The proof of (3) (1)
is complete.

IV. THE PROOF OF THETHEOREM

The Proof of Theorem 1:Necessity: Otherwise, can
be written in the form (4). In this case, it can be verified that

may be written in the form following form:

(21)
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where is a constant and each
is an locally

integrable function on . [In fact, it is easy to see that
can be written in the form (21) with
for any with and

, which yield (21).] By (21), a straightforward
calculation shows that the general derivative of
satisfies the following equation:

for any

Hence, by Lemma 4, there exists a compact setin such
that , a contradiction. This completes the
proof of the necessity.

Sufficiency: Without loss of generality, we may assume that
, . Otherwise, we may choose a such

that possess such a property.
If can not be written in the form (4) on some interval

with , then Lemma 4 implies that there exists a
such that can not be written in the form

(4) on . It is easy to verify that . Thus,
by Lemma 3 and Lemma 6, is dense in .
If may be written in the form (4) on each interval
with , may be written in the form (4) on
and on , respectively. Thus, may be written in the
following form:

(22)

where , if , , if , and
are constants.

Cases I: for any with . Then

is continuous on and
can not written in the form (3). Thus it from Lemma 3 and
Lemma 6 that is dense in .

Cases II: There exists an integer with such
that . Let be the largest with and

. For any , take such that
. Let , where is

or . It is easy to see that

(23)

(24)

(25)

where is the number of elements in the set
. Let satisfy . If , then

. Thus, from (24), we have

(26)

If , we have, we have

(27)

If , from (25), we have

where

which implies that

(28)

Moreover it can be verified that, for ,

(29)

For any , from (26)–(29), there exits a such
that

which yields

(30)

Hence, is dense in according to Lemma 6,
which implies is dense in . The proof of the
sufficiency is then complete.

V. CONCLUSION

In this paper, the problem on the approximation of several
variables by Sigma–Pi neural networks is investigated. A nec-
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essary and sufficient condition for an locally integrable func-
tion to be qualified as an active function in Sigma–Pi neural net-
works is obtained.
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