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LP Approximation of Sigma—Pi Neural Networks
Yue-hu Luo and Shi-yi Shen

Abstract—A feedforward Sigma—Pi neural networks with a Recently, the present authors in [15] have proved that the pre-

single hidden layer ofm neural is given by vious result still holds under the condition thgt) is locally
m no i Riemman integrable, i.e., if(¢) is locally Riemman integrable
> cig <H k . ") on R theng(t) is an SP-function if and only i§(¢) can not be
j=1 k=1 M written in the form (3). Therefore, if the previous conditions are

wherec;. 67, Ax € R. In this paper, we investigate the approxi satisfied, the(¢) is anL?SP-function. It is well known that an
C; % ke . y - . . . .

mation (J);‘ arb’itrary functions f: R® — R by a Sigma-Pi neural L? Locally mtegrable fun(_:tlon OR may helther be contmuous,_
networks in the L? norm. For an L® locally integrable function nor be locally Riemman integrable. It is natural to ask what is
g(t) can approximation any given function, if and only if g(¢) can that characteristic condition for ak¥ locally integrable func-

not be written in the form >=7"_, Y77 o ajk(In |¢])T~ > tion to be anL.” SP-function. The purpose of this paper is to an-
Index Terms—LP approximation, neural network, Sigma—Pi Swer this question and give a necessary and sufficient condition
function. to solve the problem. The remainder of this paper is organized as

follows. Our main results are presented in Section Il. In order to
prove the main results, several lemmas are given in Section III.
Finally, the proof of the main results is presented in Section IV.

NE OF the most interesting questions connection neural

networks is the approximation capability of neural net- 1. MAIN RESULTS
works. There have been many papers related to this topic. For the ) o
reference one can read [1]-[13] and the references given therel € main results in this paper are as follows.
In this paper, the-approximation capability of Sigma—Pineural 1heorem 1:Let g(¢) be L” locally integrable o with 1 <
networks is investigated. In mathematical terminology, it is t < o°- Theng() is an L SP-function if and only ify(#) can
find some conditions such that under which all the linear comiiot be written in the following form oR (a.e):
nations of elementg ([, _; 1 — 6x/cu.) are dense ill?(K) n m
for any compact seX in R™, wherex = (x4, zs2, ..., z,)isa J—1, . 4k
variant,;, € R are constants. Let(¢) be a function orR. g(¢) ot Z Z(ln HY st @
is said to be a SP-function if all functions of the following form:
m n ; wherea;;, are constants.
chg <H Tk — 9k> ’ m=1,2 ... 1) The following Corollary 2 is an immediate consequence of
A, Theorem 1.

Corollary 2: Letg(t) beL? locally integrable o with 1 <

are dense i0(K) for any compact sek in R™. g(¢) issaidto ; < oo. Theng(t) is an LPTW-function if and only ifg(t) is
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j=1 k=0

j=1 k=1

be anL?SP-function if all functions of the following form: not a polynomial orR (a.e).
m Remark 3: Hornik in [4] and M. Leshneet al.in [3] proved
qu(& cz— 6), M €R™, 6, €R (2) that g(t) is a LPTW-function if g(t) is essentially locally
k=1 bounded and nonpolynomial d& Cheng in [12] proved that

. R . . g(t) is an LPTW-function if g(¢) is L? locally integrable and
are der;se I (K) .for any compact sek in R -9(t) is said to bfal)ongs toS’(R) (i.e., the inteér)ayﬁ F()g(t) dt is existent for
.be aan TW-function if all funct|.onsnof the form (2) are denseany rapidly decreasing infinitely differentiable functigi{t)
in LP(K') for any compact sek in R™. onR). Corollary 2 is a generalization of these results.

It has been proved in [9] and [10] thatgft) is continuous
on R theng(¢) is a SP-function if and only if;(¢) can not be
written in the following form:

I1l. SOME NOTATIONS AND LEMMAS
Forh = (A, Ag, .., M)y 2 = (21, 29, ..., &) € R™,

n m
i 4 an n-multi-index «, i.e., « € R"™ and each coordinate
1 J—1 otk . LT
a°+;(n|t|) ;aﬂ‘t ®) ofaisa nonnegative integer, let® = z{z5? ... 2%,
= N Az = Az, Aexo, o, ApTe), ol = Y0l o,
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For a functiong onR and a functionf onR™, let suppf be the
support off, i.e., suppf = {z € R*|f(x) # 0}. Let

K)= {ZCMJ( H oy — Or) ) Yk, ¢, M €R,
k=1 k=1

1S/€Sﬂ,m21} (6)
Yo(f, K) = {Z e f (A o+ 6k) 16k, A € R™, o €R,
k=1
*)
1S/€Sﬂ,m21} (7)

wherexz = (z1, z2, ...
defined by

x,) € K is a variant And let § be

g 9(x) = g(n(x)),  VreR" ®)

For a functiong onR and a function) onR™, go¢ and f * 1)
are defined by

god(t) = /Rg(ts)d)(s) ds, VteR
and

frp(z) = VaeR"

R»

[l —y)(y) dy, 9)

respectively. LeC*°(R"™) be the set consisting of all infinitely

continuously differentiable functions d&i*. For a setd in R,
let

C=(A) ={f|f € C™(R"), suppf C A},

Co(A) ={f|f € C(R™), suppf is compact and
suppf C A},

C§(A) ={f|f € C(R™), suppf is compact
suppf C AandD’f € C(R™), V8 < al,

C5o(A) ={f|f € C=(R™), suppf is compact and
suppf C A},

L? (R™) ={f]|fis L? locally integrable orR™ }.

If fis «-times differential at:, D* f(x) is the partial derivative
of f(z) atz, i.e.,

ol f(x)

A Pra®2 ..

D*(x) = 5

axn(yn ’

If fislocally integrable o™, thenD* f is the general deriva-
tive, i.e.,D* f is a linear functional olg°(R™) defined by

nlel [ f(@)D*¢(x) da,

R»

D f(¢) = (-1 V€ O (R").
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Lemmal1[9]: Let K be acompactsetR* andf € C(R"™).
If D*f # 0, thenz® belongs to the closure dfy(f, K) in
C(K).

Lemma 2 [9], [10]: Let g(t) € C(R). Then the following
statements are equivalent:

1) the closure oE(g, K)in C(

compact sef in R";

2) g cannot be written in the form (3).

Lemma 3: Suppose thai(t) € C°(R\ {0}) and0 ¢ (a, b).
Then g(t) can not be written in the form (4) on the interval
(a, b), ifand only if for anyn-multindex« there exists am,, €
R™ such that

D%g(xo) #£ 0, m(za) € (a, b).

Proof: Necessity. Otherwise, there existsramultiindex
« such that

K)is equal toC(K) for any

(10)

DY(z)=0, VYu(z)€ (a,b) (11)

which implies that
DmHYesry =0,  Va(z) € (a, b) (12)
for any integetn with (m+1)e > o, wheree = (1, 1, ..., 1).

By some computation, we see that (12) is equivalent to

(n—1)(m+1)+1

g;(m())’~
€ (a, b)

whereg;’s are constants dependingen In other wordsg(t) is
a solution of the following differential equation of ordefm +

1):

(n—1)(m+1)+1

2.

i=1

L) () = 0
j=1

V() (13)

gt g () =0, Va(x) € (a, b).

(14)

It is easy to verify thatD(™m+De(In 7 (x))?~L(x(z))* = 0 for
anyj, kwith 1 < j < nand0 < &k < m, which implies that
t In* |t),0 < j < n—1and0 < k < m are solutions of
(14). Thus any solution of (14) may be written in the form (4)
because’ In* |t|,0 < j < n —1,and0 < k < m are linearly
independent. This completes the proof of the necessity.
Sufficiency. It is easy to see thaft) satisfies (12) ifg(¢) can

be written in the form (4) ofa, b), which completes the proof
of sufficiency. ]

Lemma 4: Letg(t) € LY ., 0 ¢ (a, b) and0 < 6 < 1.
If g(¢) can not be written in the form (4) ofw, b), then there
exists apy € C§°([1 — &, 1 + 8]) such that goge)(t) can not
be written in the form (4) ofta, b).

Proof: Otherwise,(go¢)(t) may be written in the form
— 6,1+ 4]). Sincegog €

In order to prove Theorem 1, we need the following Lemma?) on (a, b) forany ¢ € C5o([1 —
Lemma 3-Lemma 6 can be proved by the argument used in [8f7"(R \ {0}), applying Lemma 1 tgo¢, we see that for any
[4], [9], [10], [15]. Lemma 1 is Corollary 4 in [9], Lemma 2 is ¢ € C§°([1 — 6, 1 + ¢]) there exists am-multiindex a,, such
Theorem 10 in [9] (or Corollary in [10]). hat

Ix(x) # 0 is satisfied D“‘f"g/o?)(x) =0, z €R", n(zy) € (a, b)
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which implies that < 2M(1 — &) sup
Rty
Ol =6, 1+6) =JWa (15) : 1/p
; ( lg(m(x)s) - g(w(w)s'w) . a7)
K

whereWo = {¢|¢ € C5°([1 — 6,1+ 8]), D*gog(z) = 0, This complete the proof of the conclusion (1). The proof of the

Ve € R, n(z) € (a,b)}. SinceCgo([1 — 6, 1 +6]) is a conclusion (2) is similar to that of the conclusion (1). And the
Frechét space (see, e.g., [14, example 1.46]), it follows froaéta” is omitted. .

(15) and the Bair's category theory that there exits at le#igt a Lemma 6: Let f € L (R") andk be a nonnegative in-
such that¥,, contains a nonempty open set, which implies thi’éger,e — (1, 1,...,1). l'lq(ﬁen the following statements are
Wa, = C([1 -6, 1+6]). Lettingm = mg be an integer with equivalent: T
me > oo and applying Lemma 3 to each elementidn,,, we - I
see thayy ¢ ¢ can be written in the form (4) withn = mgo on g E)Or(éfr’w Ii)m:ulﬁﬁﬁlfd{e);;?yrf nlzect?wrgfeag;iss?faineﬁcla (R™)
(a, b) forany¢ € Co([1 — 6, 1 4 &]). such '(3:161'[ = 0

Take ¢, € C3°([1 — 6, 1 4 §]) such that{g ¢ ¢, }7° con-
verges tg in L?(a, b). Such a sequence of functions is clearly o )
existent. LetX, (be tr)1e subspace spanned f#f In’ |t], 0 < R~ H@) Dy (a) de 7 0; (18)
k < mp, 0 < j < n— 1}. It is obvious thatX, is of fi-
nite dimension, hencé is closed. According to the previous
conclusions proved; ¢ ¢,, belongs to the subspacg,. Since
llg © ¢ — gllp, = 0(n — o), the closeness aX, implies that
g € Xo, i.e.,g(t) can be written in the form (4) ofx, b), which

3) foranyn-multi-indexa > ke, there exists & € Cg(R™)
such that (18) is satisfied.
Proof: (2) = (3) is obvious.
(1) = (2): Otherwise, there exists anmulti-index« such
thatD* f = 0. Let K C R™ be a compact witdnt(K) # 0.

is a contradiction! The proof is then complete. [ | . o
Lemma 5: Then, for anyy € Cg°(K) andd, A € R™ with 7#(\) # 0, we
1) Letg € LY (R), ¢ € Co((0, 2)), K be a compact set in have
R™ andﬂ'( ) 7£ 0, YV € K. ThengO(/) c E(g, K) the f()\_la:—i—Q)D“z/)(a:) dr
closure of¥(g, K) in LP(K); K
2) Letf e LY (R™), ¢ € Ch(R") andK be a compact set o
oc = D —_ = 1
in R*. Thenf = ¢ € Xo(f, K) the closure oy (f, K) ™) R H@)D (A = A) dz =0 (19)
i P
in LP(K). which implies that
Proof (1): From the assumption, we may assume that
suppp C [bo, 2 — 6] with § € (0, 1). From the integrability o . 00 /1
of :d! we have . h(.’IZ)D Z/}(aj) dx = 07 \Vli/) € C(0 (R )7
h(z) € Zo(f, K). (20)
lim sup g(m(z)s) — g(r(z)s)|P dz = 0. (16)
§—0T o srefeg, 2—60] JK lo(m(w)s) (r(@)3)] Taking into account the assumption (1), (20) implies that

|s—s/|<é

S x*D*¢(x)dz = 0, V¢ € C5°(K), which is clearly
Let M = max, |¢(s)|. For any positive integem, let A,,,; IMpossible sincdnt(K) # 0. This completes the proof of (1)
80 = Go,m < Q1,m < ... < Gmr,m = 2 — & be a partition = (2).

Of [67 2 — 60] W|th |Arn| - Inan(ak,rn - ak—l,rn) < 1/m . (53) :>h(1) F]Sr anzn-mug-izdex [(jj’ Iet @ ?16 ann-mult?-
Itis clear thatS~™ . [ . ds belonas to Ndexwitha > ke ander > 3. According to the assumption,
! :":1 The—1, 1 g,g,(x)ak' J9ls)ds g there exists @ € C§(R™) such that (18) is satisfied. Let_

(g, K). Thus, it follows thatgo € ¥i(g, K) from (16) and  pe the function defined by_(z) = ¥ (—x), Y& € R™. Then
the following inequality: f *1_ belongs taXy(f, K) according to Lemma 5. It is easy

, to see that (18) implies thad*(f « ¢»_)(0) # 0. Thus, by

2=% J N Lemma 5 and Lemma L;° € So(f *v_, K) C Xo(f, K).

x| s, g(n(@)s)p(s) ds = - Hence Xo(f, K) is dense inL?(K). The proof of (3)=> (1)

=1 ” is complete. n

P 1/p
- g(m(x)ag.m)P(s) ds da:) IV. THE PROOF OF THETHEOREM
The Proof of Theorem 1Necessity: Otherwisg(¢) can
m g be written in the form (4). In this case, it can be verified that
<M / / |lg(m(x)s)(s) g(t) may be written in the form following form:
K k=1 @h—1,m

n

m
p\ 1/p
) ka gjk Lly evvy Tj—1y L1y ---» xn)
=1k

.o 1-1/p
Al —1,m

(21)
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and
LP

constant
an

where Cjk is a

Gt Tty ooy Ty, Tjg1s ooy Tn) IS locally

integrable function onkZ™L. [In fact, it is easy to see that
(m(x))*(In 7(x))’~* can be written in the form (21) with

gt) = t*(nt)’~! for any k, j with 0 < k¥ < m and

1 < j < n, which yield (21).] By (21), a straightforward

calculation shows that the general derivatiVé g(x) of g(x)
satisfies the following equation:

D%g(z) =0, foranyw > (m + 1)e.

Hence, by Lemma 4, there exists a compact/Seh R™ such
thatXo(f, K) # LP(K
proof of the necessity.

Sufficiency: Without loss of generality, we may assume that

7(x) # 0,Vz € K. Otherwise, we may choosefac R™ such
that K’ = K + 6 possess such a property.

If ¢(¢) can not be written in the form (4) on some interval
(a, b) with 0 ¢ (a, b), then Lemma 4 implies that there exists a
2)) such thaty ¢ ¢ can not be written in the form

¢ € C5o((0,
(4) on(a, b). Itis easy to verify thay o ¢ € L} (R™). Thus,
by Lemma 3 and Lemma 6;q(g ¢ ¢, K) is dense inL?(K).
If g(¢t) may be written in the form (4) on each interv@al, )
with 0 ¢ (a, b), g(t) may be written in the form (4) o0, o)
and on(—
following form:

z’ﬂ:’nlh

=1 k=0

Y(In [t~ (22)

Wherehjk(t) = Qjk, if £t >0, hjk(t) = bjk, if t <O, ajk and
b;i are constants.

), a contradiction. This completes the

0), respectively. Thug;(t) may be written in the
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eachlf 1 < j < jo, we have, we have

/. ) iljk(x)Da ((/) (%)) dx

= 27§71 max{|ajol, [bjo|} x |In &0~
<[ @l D) de

If j = jo, from (25), we have

[, oo (6(2))

Jjo—1
= co,7(=1)"D(In §7yfa—tgn=lel 4 gnlel §° /

(o 1)
El(jo — 1 = k)!

where

X max
1<i<

(27)

(I 8™y~ =F(n 7(2))* D¢ (x) dx

14 (=11

2 + bjoo

co, 1 = | aj50

1-— (—1)"—T<I>>

2

which implies that

/n ﬁjo(x)Da (d) (%)) dx

2 57 (2 a0 = il 7 (D7 0)

1
— max{laj ol [0l x 2° 1o 0"F* 1 smax

i@ ) (28)

Cases I"ajo = bjo forany j with 1 < j < n. Then \greover it can be verified that, far< j < n,1 < k <m

a(t) = g(t) > o1 ajolt Y(In [¢|)Y~1 is continuous ot and

can not written in the form (3). Thus it from Lemma 3 and / hji(x)D%¢ (%) dx
Rn

< 62n7|a|

Lemma 6 that(g, K) is dense inL?(K).
Cases II: There exists an integegrwith 1 < 57 < n such
thata;o # bj0. Let jo be the largesy with 1 < j < n and

{lazxls bk} |n In smt

max
1<j<n,1<k<m

ajo # bjo. For anya > e, takeg € C5°([—1, 1]*) such that x 2" max {|D%¢(x)]: € [-1, 1]"}. (29)
D7 ¢(0) 7 0.LetQr = Iy x Iy x... x I, wherel is [0. 1] For anya > ¢, from (26)—(29), there exits& € (0, ¢ 1) such
or [—1, 0]. ltis easy to see that that
L o s |[ i (o(2))
. - »
(23) noom ) .
> hjx(x) D <<7) <—>> dx
. T R» 60
Jj=1, j7jo k=0
[ uln@D D@y ds =0, G=12on which yields
(24) "
/ §(x)D” <¢ <5_>> dx £ 0. (30)
n 0
5 D¢(x)de = (=1)"DD*°¢(0) 0 (25) Hence,%o(4, K) is dense inL?(K) according to Lemma 6,

which impliesXo (g, K) is dense inL?(K). The proof of the
where7(f) is the number of elements in the sgt: [, = sufficiency is then complete. u
[0, 1]}. Let§ > 0 satisfyé € (0, e7!). If jo < j < n, then

ajo = bjo. Thus, from (24), we have

/n hji(z) D™ (d) (%)) dr =0.

V. CONCLUSION

In this paper, the problem on the approximation of several

(26) variables by Sigma—Pi neural networks is investigated. A nec-
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essary and sufficient condition for d# locally integrable func-  [5]
tion to be qualified as an active function in Sigma—Pi neural net- 5
works is obtained. [e]

(7]
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